Learning Rules from Multisource Data for Cardiac Monitoring

نویسندگان

  • Élisa Fromont
  • Rene Quiniou
  • Marie-Odile Cordier
چکیده

This paper formalises the concept of learning symbolic rules from multisource data in a cardiac monitoring context. Our sources, electrocardiograms and arterial blood pressure measures, describe cardiac behaviours from different viewpoints. To learn interpretable rules, we use an Inductive Logic Programming (ILP) method. We develop an original strategy to cope with the dimensionality issues caused by using this ILP technique on a rich multisource language. The results show that our method greatly improves the feasibility and the efficiency of the process while staying accurate. They also confirm the benefits of using multiple sources to improve the diagnosis of cardiac arrhythmias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel universes to improve the diagnosis of cardiac arrhythmias

We are interested in using parallel universes to learn interpretable models that can be subsequently used to automatically diagnose cardiac arrhythmias. In our study, parallel universes are heterogeneous sources such as electrocardiograms, blood pressure measurements, phonocardiograms etc. that give relevant information about the cardiac state of a patient. To learn interpretable rules, we use ...

متن کامل

A Learning Dempster-shafer Model for Automated Building Detection

This paper presents a learning Dempster-Shafer model for the detection of buildings in aerial image and range data. The process of evidence assignment in the Dempster-Shafer method is implemented through membership functions in an adaptivenetwork-based fuzzy inference system, where a back propagation learning rule is employed to tune the evidence assignment functions using training samples. The...

متن کامل

Detection of children's activities in smart home based on deep learning approach

 Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...

متن کامل

Detection of children's activities in smart home based on deep learning approach

 Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...

متن کامل

Post-classification of Misclassified Pixels by Evidential Reasoning: a Gis Approach for Improving Classification Accuracy of Remote Sensing Data

This paper discusses an approach for extracting supporting evidence from multisource spatial data and by rule-based models to incorporate the evidence with pre-classified Landsat TM data for improving classification accuracy. The process was focused on the extracted "possibly misclassified pixels" (PMPs) only. Based on Dempster-Shafer's theory of evidence, the concepts of homogeneous, heterogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005